Impact of Trichoderma harzianum and bacterial strains against Striga hermonthica in Sorghum

Mohammed Hassan, Mona A. Azarig, Ahmed M. E. Rugheim, Rashida M. A. Abusin, Magdoline M. Ahmed, Migdam E. Abdelgani, Rania A. Abakeer


A series of laboratory and green house experiments were conducted to investigate the efficacy of Trichoderma harzianum fungi, bacteria (Flavobacterium, Bacillus megatherium var. phosphaticum (BMP) and Azomonas) on Striga hermonthica early developmental stages, incidence and sorghum growth under laboratory and greenhouse conditions. The first laboratory experiment results showed that application of BMP + Flavobacterium significantly inhibited S. hermonthica seeds germination during and after conditioning in response to GR24 concentrations as compared to medium control. In the second laboratory experiment, application of the filtrate of T. harzianum alone or in combinations with bacteria significantly inhibited S. hermonthica germination and haustorium initiation as compared to the corresponding control. From greenhouse experiment results, S. hermonthica emergence significantly reduced by T. harzianum and insignificantly by the combination of Flavobacterium + BMP + T. harzianum. T. harzianum followed by the combination of Flavobacterium + BMP gave the highest increment in plant height. T. harzianum significantly increased sorghum number of leaves as compared to the infested control. The combination of Flavobacterium + BMP + T. harzianum gave the highest number of leaves. The combination Flavobacterium + BMP gave the highest sorghum shoot dry weight, followed by T. harzianum. While the highest sorghum root dry weight was obtained from the combination of Flavobacterium + BMP + T. harzianum. Generally, the combination of T. harzianum + Flavobacterium + BMP reduced S. hermonthica infestation and enhanced sorghum growth in comparison to the infested control.


Bacillus megatherium; Flavobacterium; Striga hermonthica; Trichoderma harzianum

Full Text:



Ali, H.A.; Elamin, H.B. and Dirar, H.A. Biological control of Striga hermonthica Del. Bendth: screening for bacteria scavenging Strigol. American Journal of Biochemistry, 3 (2013): 89-92.

Alori, E. T., Glick, B. R. and Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiology, 8 (2017): 1–8.

Avedi, E., Ochieno, M.; Ajanga, S.; Wanyama, C.; Wainwright, H.; Elzein, A. and Beed, F. Fusarium oxysporum f. sp. Striga strain Foxy 2 did not achieve biological control of Striga hermonthica parasitizing maize in western Kenya. Biological Control, 77 (2014): 7–14.

Babiker, A.G.T.; Ahmed, E.A.; Dawoud, D.A. and Abdella, N.K. Orobanche species in Sudan: History, distribution and management. Sudan Journal of Agricultural Research, 10 (2007): 107-114.

Bhale, U.N. Prospective of agricultural wastes as base resources for mass multiplication of

Trichoderma species worldwide: an overview. International Journal of Current Research, 8:(1) (2016): 24968-24978.

Boari, A.; Ciasca, B.; Pineda-Martos, R.; Lattanzio, V.M.; Yoneyama, K. and Vurro, M. Parasitic weed management by using strigolactone degrading fungi. Pest Management Science, 72 (2016): 2043-2047.

Elabaied, E.M.; Rugheim, A.M.E.; Hassan, M.M.; Ahmed, M.M.; Yahia, M.A.; Abakeer, R.A.; Abusin, R.M.A.; Osman, A.G.; Abdelgani, M.E. and Babiker, A.G.T. Influence of bacteria on Orobanche crenata seed bank size, incidence and Vicia faba L. performance. American-Eurasian Journal of Sustainable Agriculture, 11(4) (2017): 30-39.

Elzein, A.; Kroschel, J. and Leth, V. Seed treatment technology: an attractive delivery system for controlling root parasitic weed Striga with mycoherbicide. Biocontrol Science Technology 16: (2006) 3–26.

Hassan, M.M.; Osman, A.G.; Rugheim A.M.E.; Ali, A.I.; Abdelgani, M.E. and Babiker A.G.T. Effects of bacterial isolates and strains on Phelipanche ramosa (L.) Pomel haustorium Initiation. International Journal of Biosciences, 6(2) (2015): 296-303.

Hassan, M.M.; Azrag, M.A.; Rugheim, A.M.E.; ElNasikh, M.H.; Modawi, H.I.; Ahmed, M.M.; Abakeer, R.A.; Abusin, R.M.A.; Osman, A.G.; Abdelgani, M.E. and Babiker, A.G.E. Potential of Trichoderma harzianum as a biocontrol agent against Striga hermonthica in sorghum, International Journal of Current Microbiology App. Sci., 8(3) (2019): 195-206.

Jamil, M.; Kanampiu, F.K.; Karaya, H.; Charnikhova, T. and Bouwmeester, H.J. Striga hermonthica parasitism in maize in response to N and P fertilizers. Field Crop Research, 134 (2012): 1–10.

Kabdwal, B.C.; Sharma, R.; Tewari, R.; Tewari, A.K.; Singh, R.P. and Dandona, J.K. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egyptian Journal of Biological Pest Control, 29 (2019): 1-10.

Kapulnik, Y. and Chet, I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite T. harzianum strain T-203. Plant Physiology and Biochemestry, 38(2000): 863-873.

Mbuvi, D.A.; Masiga, C.W.; Kuria, E.K.; Masanga, J.; Wamalwa, M.; Mohamed, A. and Runo, S.M. Novel sources of witchweed (Striga) resistance from wild sorghum accessions. Frontiers in Plant Science, 8 (2017): 1-15.

Omondi, E.; Norton, J. and Ashilenje, D. Performance of a local open pollinated maize variety and a common hybrid variety under intensive small-scale farming. African Journal of Agricultural Research, 9(11) (2014): 950–955.

Oswald, A. Striga control technology and their dissemination. Crop Protection, 24 (2005): 333-342.

Othira, J.O.; Omolo, J.O.; Washina, F.N. and Onek, L.A. Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L.) against witchweed (Striga hermonthica Del. Benth) infestation. Journal of Agricultural Biotechnology and sustainable Development, 4 (2012): 37-44.

Pilgeram, A. and Sands, D. Bioherbicides. In M. Hofrichter (Ed.), Industrial Applications(2nded). Berlin Heidelberg: Springer Verlag. pp. (2010) 395–405

Rodenburg, J.; Meinke, H. and Johnson, D.E. Challenges for weed management in African rice systems in a changing climate. Journal of Agricultural Sciences, 119 (2011): 427–435.

Singh, S. and Kapoor, K.K. Inoculation with phosphate solubilizing microorgani-sms and a vesicular-arbuscular mycorr-hizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology Fertil. Soils, 28 (1999): 139–144.

Sugimoto, Y.; Ahmed N.E. and Yasuda, N. Trichothecene inhibitors of Striga hermonthica germination produced by Fusarium solani. Weed Science, 50 (2002): 658–661.

Teka, H.B. Advance research on Striga control: A review. African Journal of Plant Science, 8(11) (2014): 492–506.

Vinale, F.; Sivasithamparam, K.; Ghisalbertin, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L. and Lorito, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol., 72(2008): 80–86.

Yahia, M.A.; Hassan, M.M.; Elamien, M.A.M.; Abdalla, N.K.; Rugheim, A.M.E.; Elsalahi, R.H.; Abusin, R.M.; Abakeer, R.A.; Ahmed, M.M.; Osman, A.G.; Abdelgani, M.E. and Babiker, A.E. Laboratory and Field Studies of Trichoderma harzianum, Bacterial Strains and Imazethapyr on Orobanche crenata Forsk Infesting Vicia faba. Asian Journal of Agriculture and Food Sciences, 6 (6) (2018): 209-217.

Yahia, M.A.; Hassan, M.M.; Elamien, M.A.M.; Abdalla, N.K.; Rugheim, A.M.E.; Osman, A.G.; Abdelgani, M.E. and Babiker, A.E. Trichoderma harzianum and bacterial strains as bioagents for suppressing Orobanche crenata growth and parasitism in faba bean. International Journal of Agriculture, Environment and Bioresearch, 5(3) (2020): 10-20.

Yedidia, I.; Benhamou, N.; Kapulnik, Y. and Chet, I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38(2000): 863–873.

Zhao, Q.; Ran, W.; Wang, H.; Li, X.; Shen, Q.; Shen, S. and Xu, Y. Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl, 58(2) (2013): 283–292.


Copyright (c) 2020 Annals of Plant Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.