Drought and salinity stress as major threat for sustainable Mung bean production: Emerging challenges and future perspectives

Nirmala Sehrawat, Mukesh Yadav, Diwakar Aggarwal, Ashwanti Devi


Climate change is a serious concern in the present scenario for the sustainable production of food crops. Insufficient food availability, increasing population, poverty, malnutrition, and depletion of natural resources may lead to a global food crisis. Stable and greater production of nutritious food crops may be an alternative to overcome these difficulties. Mung bean (Vigna radiata) is an important food legume with an excellent source of easily digestible protein. It is also recommended for health benefits due to the presence of bioactive compounds. Short life cycle and nitrogen fixing ability makes it suitable for major cropping system. Mung bean is highly sensitive towards various abiotic and biotic stress factors prevailing in the environment. The present review focuses on drought and salinity stress as major abiotic stresses limiting mung bean production. It includes adverse effects, mung bean response, management strategies, and significant efforts made towards these challenges. In this review, the need of addressing the current demand on modern agriculture and food production activities impaired by global climate change has been focused.


Drought; Salinity stress; Mungbean; Management strategies; Sustainable production

Full Text:



Ahmad A., Selim M.M, Alderfasi A.A., Afzal M., Effect of drought stress on mung bean (Vigna radiata L.) under arid climatic conditions of Saudi Arabia. In: Miralles Garcia J.L., Brebbia C.A., Eco-system and Sustainable Development. Southa-mpton, UK: WIT Press, (2015). 185-193 pp.

Ahmad P, Umar S, Oxidative stress: role of anti-oxidants in plants. Stadium Press, New Delhi. (2011).

Aitawade M.M., Sutar S.P., Rao S.R., Malik S.K., Yadav S.R., Bhat K.V. Section ceratotropis of sub-genus ceratotropis of Vigna (Leguminosae-Papili-onoideae) in India with a new species from Northern Western Ghats. Rheede, (2012) 22:20-27.

Alderfasi A.A., Alzarqaa A.A., Al-Yahya F.A., Roushdy S.S., Dawabah A.A., Alhammad B.A., Effect of combined biotic and abiotic stress on some physiological aspects and antioxidant enzymatic activity in mung bean (Vigna radiata L.). Afr. J. Agri. Res, (2017), 12: 700-705.

Ali M., Gupta S., Carrying capacity of Indian agriculture: pulse crops. Curr. Sci., (2012) 102: 874–881.

Allito B.B., Nana E.M., Alemneh A.A. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol. Soil Biol., (2015) 20:1-6.

Anjum N.A, Umar S., Aref I.M., Iqbal M., Manag-ing the pools of cellular redox buffers and the control of oxidative stress during the ontogeny of drought-exposed mung bean (Vigna radiata L.) role of sulfur nutrition. Front. Environ. Sci, (2015) 2: 66.

Bangar P., Chaudhury A., Tiwari B., Kumar S., Kumari R., Bhat K.V., Morphophysiological and biochemical response of mung bean (Vigna radi-ata (L.) Wilczek) varieties at different develop-ental stages under drought stress. Turk. J. Biol., (2019) 43: 58-69.

Basu S., Ramegowda V., Kumar A., Pereira A. (2016). Plant adaptation to drought stress. F1000 Research: 5. F1000 Faculty Rev-1554.

Bharadwaj N., Gogoi N., Barthakur S., Basuma-tary N., Morpho-physiological responses in diffe-rent mung bean genotypes under drought stress. Res. J. Rec. Sci, (2018) 7:10-18.

Dutta P, Bera AK, Screening of mung bean geno-types for drought tolerance. Legume Res., (2008) 31: 145-148.

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci., (2017) 8:1147.

FAO (2016) International year of legumes: Nutri-tious seeds for a sustainable future. Food and Agriculture Organisation of the United Nations and World Health Organisation. Rome: FAO; (2016). www.fao.org/pulses-2016

Fathy N.E., Ismail S.M., Basahi J.M., Optimizing mung bean productivity and irrigation water use efficiency through the use of low water- consum-ption during plant growth stages. Legume Res., (2018). 41: 108–113.

Foyer C.H., Lam H.M., Nguyen H.T., Siddique KH et al., Neglecting legumes has compromised human health and sustainable food production. Nat. Plants., (2016) 2: 16112.

Fuller D.Q., Contrasting patterns in crop dome-stication and domestication rates: recent archaeo-botanical insights from the old world. Ann. Bot. (Lond.) (2007). 100: 903–924.

Fuskhah E., Purbajanti E.D, Anwar S., Test of the resistance of rhizobium bacteria to salinity for the development of food legume plants in coastal areas. IOP Conf. Series: Earth and Environmental Science, 2019, 250, Purwokerto, Indonesia.

Gong Y., Rao L., Yu D., Abiotic stress in plants. In: Agricultural Chemistry, (M. Stoytcheva and and R. Zlatev), Rijeka: InTech (2013)

Hanumantha Rao B., Nair R.M., Nayyar H., Salinity and high temperature tolerance in mung bean (Vigna radiata (L.) Wilczek) from a physiolo-gical perspective. Front. Plant Sci., (2016). 7:957.

Hasanuzzaman M., Nahar K., Fujita M., Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages.In: Ecophysiology and Responses of Plants under Salt Stress, Edr: Ahmad P, Azooz M.M., Prasad M.N.V., (2013). 25–87.

Hasanuzzaman M., Hossain M.A., daSilva J.A.T., Fujita M., Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: Crop Stress and Its Management: Pers-pectives and Strategies, Edr: Bandi V, Shanker A.K., Shanker C., Mandapaka M., (2012): 261–316.

Kang Y.J., Kim S.K., Kim M.Y., Lestari P., Kim K.H., Ha B.K., Jun T.H., Hwang W.J., Lee T., Lee J., et al., Genome sequence of mung bean and insights into evolution within Vigna species. Nat Commun, (2014). 5:5443.

Kumar B.S., Sathiyanarayanan G., Prakash M., Influence of drought stress on root distribution in Mung bean (Vigna radiata (L.)Wilczek). Int. J. Trop. Agri., (2015). 33: 837-843.

Lambrides C.J., Godwin I., Mungbean. In: geno-me mapping and molecular breeding in plants pulses, Sugar and Tuber Crops, Vol.3, Edn. Kole C., (2007). 69–90.

Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., et al., Research progress and perspect-ive on drought stress in legumes: a review. Int. J. Mol. Sci., (2019a), 20: 1–32.

Nadeem M., Li J., Yahya M., Wang M., Ali A., Cheng A., Wang X., Ma C., Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int. J. Mol. Sci., (2019b). 20: 799.

Nair R.M., Yang R.Y., Easdown W.J., Thavarajah D., Thavarajah P., Hughes Jd’A., Keatinge J.D.H. Biofortification of mung bean (Vigna radiata) as a whole food to enhance human health. J. Sci. Food Agri., (2013). 93: 1805–1813.

Nair R.M., Pandey A.K., War A.R., Hanumantha rao B., Shwe T., Alam A., Pratap A., Malik S.R., Karimi R., Mbeyagala E.K., Douglas C.A., Rane J. Schafleitner R. Biotic and abiotic constraints in mung bean production progress in genetic improvement. Front. Plant. Sci., (2019). 10: 1340.

Naresh R.K, Singh S.P, Dwivedi A., Kumar V., Effects of water stress on physiological processes and yield attributes of different mung bean vari-eties. Afr. J. Biochem. Res., (2013) 7: 55-62.

Nazran A., Ahmed J.U., Karim A.J.M.S., Ghosh T.K., Physiological responses of mung bean (Vigna radiata) varieties to drought stress. Bangla-desh J Agri Res., (2019). 44: 1-11.

Omprakash., Gobu R., Bisen P., Baghel M., Chou-rasia K.N. Resistance/Tolerance mechanism und-er water deficit (drought) condition in Plants. Int J. Current Microbiol. Appl. Sci., (2017) 6: 66-78.

Prakash M., Sunilkumar B., Sathiyanarayanan G., Gokulakrishnan J., Screening for drought tolera-nce in mung bean. Legume Res., (2017). 40 : 423-428.

Qadir M., Quillerou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Drechsel P., Noble A.D., Economics of salt-induced land degradation and restoration. Nat. Resour. Forum., (2014). 38:282–295.

Raina S.K., Govindasamy V., Kumar M., Singh A.K., Rane J., Minhas P.S., Genetic variation in physiological responses of mungbeans (Vigna radiata (L.) Wilczek) to drought. Acta Physiol Plant., (2016) 38: 263.

Raina S.K., Rane J., Raskar N., Singh A.K., Govin-dasamy V., Kumar M., Ekatpure S.C., Minhas P.S., Physiological traits reveal potential for iden-tification of drought tolerant mung bean (Vigna radiata (L.) Wilczek) genotypes under moderate soil-moisture deficit. Indian J. Genet., (2019). 79: 427- 443.

Ranawake A.L., Dahanayaka N., Amarasingha U.G., Rodrigo W.D., Rodrigo U.T., Effect of water stress on growth and yield of mung bean (Vigna radiata L). Trop. Agri. Res. Exten., (2012). 14: 76-79.

Sadeghipour O., Polyamines protect mung bean (Vigna radiata (L.) Wilczek) plants against drou-ght stress. Biologia Futura., (2019) 70: 71–78.

Sehrawat N., Bhat K.V., Kaga A., Tomooka N., Yadav M., Jaiwal P.K., Development of new gene -specific markers associated with salt tolerance for mungbean (Vigna radiata L. Wilczek). Spanish J. Agri. Res., (2014e). 12: 732–741.

Sehrawat N, Bhat KV, Sairam RK, Jaiwal PK, Identification of salt resistant wild relatives of mungbean (Vigna radiata (L.) Wilczek). Asian J. Plant Sci. Res., (2013b) 3, 41–49.

Sehrawat N., Bhat K.V., Sairam R.K., Jaiwal P.K., Screening of mungbean (Vigna radiata (L.) Wilc-zek) genotypes for salt tolerance. Int. J. Pl. Anim. Env. Sci., (2014b) 4: 36–43.

Sehrawat N., Bhat K.V., Sairam R.K., Toomoka N., Kaga A., Shu Y., Jaiwal P.K., Diversity analy-sis and confirmation of intra-specific hybrids for salt tolerance in mung bean (Vigna radiata L. Wil-czek). Int. J. Integ. Biol., (2013c). 14: 65–73.

Sehrawat N., Jaiwal P.K., Bhat K.V., Tomooka N., Kaga A., Yadav M., Breeding mediated improve-ment of mungbean (Vigna radiata (L) Wilczek) for salt tolerance. Thai. J. Agri. Sci., (2014d). 47: 109-114.

Sehrawat N., Jaiwal P.K., Yadav M., Bhat K.V., Sairam R.K., Salinity stress restraining mung bean (Vigna radiata L. Wilczek) production: gate-way for genetic improvement. Int. J. Agri. Crop Sci., (2013a). 6: 505-509.

Sehrawat N., Jaiwal P.K., Yadav M., Bhat K.V., Sairam R.K., Injurious effects of salt stress in legumes and strategies for their improvement. Green Farming., (2014c). 5: 311-315.

Sehrawat N., Yadav M., Bhat K.V., Sairam R.K., Jaiwal P.K., Evaluation of mungbean genotypes for salt tolerance at early seedling growth stage. Biocatal. Agri. Biotechnol., (2014a), 3:108–113.

Sehrawat N., Yadav M., Bhat K.V., Sairam R.K., Jaiwal P.K., Effect of salinity stress on mungbean (Vigna radiata (L.) wilczek) during consecutive summer and spring seasons. J. Agri. Sci. Serbia., (2015). 60: 23-32.

Sehrawat N., Yadav M., Bhat K.V., Sairam R.K., Jaiwal P.K., Hybridization Between Salt Resistant and Salt Susceptible Genotypes of Mung bean (Vigna radiata (L) Wilczek) and Purity Testing of the Hybrids Using SSRs Markers. J. Integr. Agri., (2016). 15: 521-527.

Sehrawat N., Yadav M., Sharma A.K., Kumar V., Bhat K.V., Salt stress and mungbean (Vigna radiata (L.) Wilczek]: effects, physiological pers-pective and management practices for alleviating salinity. Arch. Agron. Soil Sci., (2019). 65 (9): 1287-1301.

Sehrawat N., Yadav M., Screening and cross-compatibility of various Vigna species for yellow mosaic virus resistance. J. Innov. Biol., (2014f). 1: 31-34.

Sharma DK et al., CSSRI Vision 2050. Central Soil Salinity Research Institute, Karnal, Haryana, India. (2014).

Singh G., Climate change and sustainable mana-gement of salinity in agriculture. Res. Med. Eng. Sci, (2018). 6.

Swathi L., Reddy D.M., Sudhakar P., Vineela V., Screening of Mung bean (Vigna radiata L. Wilc-zek) genotypes against water stress mediated through polyethylene glycol. Int. J. Curr. Micro-biol. App. Sci., (2017) 6: 2524-2531.

Thomas M., Robertson J., Fukai S., Peoples M.B., The effect of timing and severity of water deficit on growth development, yield accumulation and nitrogen fixation of mung bean. Field Crops Res., (2004). 86: 67–68.

Tomooka N., Vaughan D., Moss H., The Asian Vigna: genus Vigna subgenus Ceratotropis gene-tic resources. Kluwer Publishers. (2002).

Uddin S.H, Parvin S.H, Awal M.A, Morpho-physiological aspects of mungbean (Vigna radiata L.) in response to water stress. Int. J. Agr. Sci., (2013). 3: 137-148.

Yadav S., Irfan M., Ahmad A., Hayat S., Causes of salinity and plant manifestations to salt stress: A review. J. Environ. Biol., (2011) 32: 667-685.

DOI: https://doi.org/10.5281/aps.2020.9.6.3

Copyright (c) 2020 Annals of Plant Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.