Effect of nano-fertilizers on soil microflora

Charu Gupta, Dhan Prakash

Abstract


Nano fertilizers are one of the recent advancement tools in agriculture that are developed with an aim to increase nutrient use efficiency, reduce wastage of fertilizers and indirectly the cost of cultivation. Besides this they improve the growth and yield of crop and the quality parameters. Nano-fertilizers are very effective for precise nutrient management in precision agriculture with matching the crop growth stage for nutrient and may provide nutrient throughout the crop growth period. However, it has also been speculated that nano-fertilizers can increase the crop growth up to certain optimum concentrations, further increase in concentration may cause nutrient toxicity thereby inhibiting the crop growth. It is also necessary to assess the effect of slow release nano-fertilizer on the soil enzyme activity and soil microbial population. The introduction of nano-fertilizers into the natural environment may pose threat to beneficial microbial communities. The impact of nano-fertilizers on microbial activity could be determined through measurement of soil respiration and enzymatic activities. This review would therefore focus on the effect of nano-fertilizers on the activity of soil microorganisms including both their beneficial and deleterious effects.

Keywords


Nano-fertilizers; Soil Microflora; Fertility; Nutrient management; Precision agriculture

Full Text:

PDF

References


Ali S.M., N.M.H. Yousef and N.A. Nafady “Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi”, Journal of Nanomaterials 1 (2015): 1-10 (Article ID 218904), Print

Ben-Moshe T., S. Frenk, I. Dror, D. Minz and B. Berkowitz “Effects of metal oxide nanoparticles on soil properties”. Chemosphere 90, 2 (2013): 640–646, Print.

Bhumi G. and N. Savithramma “Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (l.) G. Don. leaf extract and validation for antibacterial activity”. International Journal of Drug Development & Research 6 (2014): 208–214, Print.

Bondarenko O., K. Juganson, A. Ivask, K. Kasemets, M. Mortimer and A. Kahru “Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review”. Archives of Toxicology 87 (2013): 1181–1200, Print.

Bünemann E.K., G. D., Schwenke, and L. V. Zwieten, “Impact of agricultural inputs on soil organisms—a review”. Soil Research 44 (2006): 379–406, Print.

Buzea C., II Pacheco and K. Robbie “Nanomaterials and nanoparticles: sources and toxicity”. Biointerphases 2 (2007): MR17–MR71, Print.

Calvarro L.M., A. de Santiago-Martín, J.Q. Gomez, C. Gonzalez-Huecas, J.R. Quintana, A. Vazquez, A.L. Lafuente, T.M. Rodríguez Fernandez and V.R. Ramírez “Biological activity in metal contaminated calcareous agricultural soils: the role of the organic matter composition and the particle size distribution”. Environmental Science and Pollution Research 21 (2014): 6176–6187, Print.

Chai H., J. Yao, J. Sun, C. Zhang, W. Liu, M. Zhu and B. Ceccanti. “The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil”. Bull Environ Contam Toxicol, 94 (2015): 490–495, Print.

Chen C., O.V. Tsyusko, D. H. Jr. McNear, J. Judy, R. W. Lewis and J. M. Unrine. “Effects of biosolids from a wastewater treatment plant receiving manufactured nanomaterials on Medicago truncatula and associated soil microbial communities at low nanomaterial concentrations”. Sci. Total Environ 609 (2017): 799–806, Print.

Chen C., J.M. Unrine, J.D. Judy, R.W. Lewis, J. Guo, D.H.Jr. McNear, et al. “Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials (TiO2, Ag, and ZnO) from a pilot wastewater treatment plant”. Environ. Sci. Technol. 49 (2015): 8759–8768, Print.

Concha-Guerrero SI, EMS Brito, HA Piñón-Castillo et al. “Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil”. J Nanomater (2014): 13, Print.

Datta S.C. “Nanoclay research in agriculture environment and industry”. National Symposium on ‘Applications of Clay Science: Agriculture, Environment and Industry’, 18-19 Feb 2011, NBSS & LUP, Nagpur (2011): 71-73.

De Rosa M.C., C. Monreal, M. Schnitzer, R. Walsh and Y. “Sultan Nanotechnology in Fertilizers”. Nat. Nanotechnology 5, (2010): 91, Print.

Dikshit A., S.K. Shukla and R.K. Mishra. “Exploring Nanomaterials with PGPR in Current Agricultural Scenario”, Lap Lambert Academic Publishing, Germany (2013) Print.

Duhan J.S., R. Kumara, N. Kumara, P. Kaura, K. Nehrab and S. Duhan. “Nanotechnology: The new perspective in precision agriculture”. Biotechnology Reports, 15 (2017): 11–23, Print.

Elumalai K., S. Velmurugan, S. Ravi, V. Kathiravan and S. Ashok Kumar. “Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity”. Spectrochim. Acta Mol. Biomol. Spectrosc, 143 (2015): 158–164, Print.

Frenk S., T. Ben-Moshe, I. Dror, B. Berkowitz and D. Minz. “Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types”. PLoS One 8 (2013): 84441, Print.

Garcia-Sanchez М., I. Garcia-Romera, T. Cajthaml, P. Tlusto and J. Szakov. “Changes in soil microbial community functionality and structure in a metal-polluted site: the effect of digestate and fly ash applications”. J Environ Management, 162 (2015): 63–73, Print.

Grün A-L. and C. Emmerling. “Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil”. Environ Sci Eur, 30 (2018): 1–13, Print.

Grün A L., W. Manz, Y.L. Kohl, F. Meier, S. Straskraba, C. Jost, R. Drexel and C. Emmerling. “Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture”. Environ Sci Eur, 31 (2019): 15, Print.

Grün A-L., S. Straskraba, S. Schulz, M. Schloter and C. Emmerling. “Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil”. J Environ Sci, 69 (2018): 12–22, Print.

Hojjat S.S. “Impact of silver nanoparticles on germinated fenugreek seed”. Int. J. Agric. Crop. Sci, 8 (2015): 627–630, Print.

Holden P.A., J.P. Schimel and H.A. Godwin. “Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates”. Curr Opin Biotechnol 27 (2014): 73–78, Print.

Hussain S., T. Siddique, M. Saleem, M. Arshad, and A. Khalid. “Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions”. Adv. Agron. 102 (2009): 159–200, Print.

Janvier C., F. Villeneuve, C. Alabouvette, V. Edel-Hermann, T. Mateille and C. Steinberg. “Soil health through soil disease suppression: which strategy from descriptors to indicators?” Soil Biol Biochem 39 (2007): 1–23, Print.

Jiling C., F. Youzhi, L. Xiangui and W Junhua. “Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils”. Front Environ Sci. 4 (2016): 10, Print.

Josko I., P. Oleszczuk and B. Futa. “The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils”. Geoderma, 232 (2014): 528–537, Print.

Judy J.D., D.H.Jr. McNear, C. Chen, R.W. Lewis, O.V. Tsyusko, P.M. Bertsch et al. “Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals”. Environ. Sci. Technol. 49 (2015): 8751–8758, Print.

Komarneni S. “Potential of Nanotechnology in Environmental Soil Science”. Proc of 9th International Conference East and Southeast Asia Federation of Soil Science Societies, (Korean Society of Soil Science and Fertilizers, Seoul) Oct 27-30 (2009): 16-20, Print.

Kottegoda N., I. Munaweera, N. Madusanka and V. Karunaratne. “A green slow release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood”. Curr. Sci. 101, 1 (2011): 73-78, Print.

Lakshmi J.V., R. Sharath, M.N. Chandraprabha, E. Neelufar, H. Abhishikta and P. Malyasree. “Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles”. J Biochem Technol. 3 (2012): S151–S154, Print.

Lejon D. P., J. M. Martins, J. Lévêque, L. Spadini, N. Pascault, D. Landry, et al. “Copper dynamics and impact on microbial communities in soils of variable organic status”. Environ. Sci. Technol. 42 (2008): 2819–2825, Print.

Liu X.M., F.D. Zhang, S.Q. Zhang, X.S. He, R. Fang, Z. Feng and Y.J. Wang. “Effects of nano-ferric oxide on the growth and nutrients absorption of peanut”. Plant Nutrition and Fertilizing Science, 11 (2010): 14-18, Print.

Macht F., K. Eusterhues, G.J. Pronk and K.U. Totsche. “Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods”. App. Clay Sci. 53.1 (2011): 20-26, Print.

Maliszewska I. “Effects of the biogenic gold nanoparticles on microbial community structure and activities”. Ann Microbiol, 66 (2016): 785–794, Print.

Manjunatha S.B., D.P. Biradar and Y.R. Aladakatti. “Nanotechnology and its applications in agriculture: A review”. J. Farm Sci., 29.1 (2016): 1-13, Print.

Maysinger D. “Nanoparticles and cells: good companions and doomed partnerships”. Org. Biomol. Chem. 5.15 (2007): 2335-2342, Print.

McKee M.S. and J. Filser. “Impacts of metal-based engineered nanomaterials on soil communities”. Environ. Sci. Nano, 3 (2016): 506–533, Print.

Mishra S., B.R. Singh, A. Singh, C. Keswani, Naqvi A.H. and H.B. Singh. “Bio-fabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat”. PLoS One 9 (2014): e97881, Print.

Morales-Díaz A.B., H. Ortega-Ortíz, A. Juárez-Maldonado, Cadenas-Pliego G., S. González-Morales and A. Benavides-Mendoza. Application of nano-elements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci: Nanosci. Nanotechnol. 8 (2017): 013001, Print.

National Research Programme. 2019. http://www.nrp64.ch/en/projects/module-environment/project-bucheli

Nibin P.M., Ushakumari K. and Ishrath P.K. “Organic Nano NPK Formulations on Soil Microbial and Enzymatic Activities on Post harvest Soil of Bhindi”. Int. J. Curr. Microbiol. App. Sc. 8.04 (2019): 1814-1819, Print.

Pradhan A., S. Seena, C. Pascoal and F. Cássio. “Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?” Microb Ecol. 62 (2011): 58–68, Print.

Rajaie M. and A.H. Ziaeyan. “Combined effect of zinc and boron on yield and nutrients accumulation in corn”. Int. J. Plant Product, 3, 3 (2009): 35-440, Print.

Rajiv P., S. Rajeshwari and R. Venckatesh. “Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens”. Acta Mol. Biomol. Spectrosc, 12 (2013): 384–387, Print.

Rajput V.D., Minkina T., Sushkova S., Tsitsuashvili V., Mandzhieva S., Gorovtsov A., Nevidomskyaya D. and Gromakova N. 2018. J Effect of nanoparticles on crops and soil microbial communities. Soils Sediments, 18: 2179–2187, Print.

Ramesh K., A.K., Biswas, J. Somasundaram and A. Subbarao. “Nano-porous zeolite in farming: Current status and issues ahead”. Curr. Sci. 99.6 (2010): 760-764, Print.

Scott N.R. “Nanoscience in veterinary medicine”. Veterinary research communications, 31. Suppl. (2007): 139-144, Print.

Selva Preetha P. and N. Balakrishnan. “A Review of Nano Fertilizers and Their Use and Functions in Soil”. Int. J. Curr. Microbiol. App. Sci. 6.12 (2017): 3117-3133, Print.

Servin A.D., R. De la Torre-Roche, H. Castillo-Michel, L. Pagano, J. Hawthorne, C. Musante, J. Pignatello, M. Uchimiya and J.C. White. “Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil”. Plant Physiol Biochem. 110 (2017): 147–157, Print.

Sharmila Rahale C. Nutrient release pattern of nano–fertilizer formulations, Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore (2010), Print.

Shukla S.K., R. Kumar, R.K. Mishra, A. Pandey, A. Pathak, M. Zaidi, S.K. Srivastava and A. Dikshit. “Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers”. Nano. Rev. 4 (2015): 439–448, Print.

Simonin M., B.P. Colman, W. Tang, J.D. Judy, S.M. Anderson, C.M. Bergemann, J.D. Rocca, J.M. Unrine, N. Cassar and E.S. Bernhardt. “Plant and Microbial Responses to Repeated Cu(OH)2 Nanopesticide Exposures Under Different Fertilization Levels in an Agro-Ecosystem”. Front. Microbiol. 9 (2018): 1769, Print.

Simonin M. and A. Richaume. “Impact of engineered nanoparticles on the activity, abundance and diversity of soil microbial communities: a review”. Environ Sci Poll Res. 22 (2015): 13710–13723, Print.

Singh M.D., G. Chirag, P.O. Prakash, M.H. Mohan, G. Prakasha and Vishwajith. “Nano-Fertilizers is a New Way to Increase Nutrients Use Efficiency in Crop Production”. Inter. J. Agri. Sc. 9.7 (2017): 3831-3833, Print.

Solanki A., D.K. John, L. Ki-Bum. “Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging”. Nanomed. 3 (2008): 567–578, Print.

Subramanian K.S. and C. Sharmila Rahale. “Synthesis of nano-fertilizer for regulated release of nutrients. In: Biomedical applications of nanostructured materials” (Rajendran V., Hillebrands, B., Prabu, P. and Geckeler K.E.) Macmillan Publishers India Ltd. New Delhi (2010): 57-62, Print.

Subramanian K.S. and J.C. Tarafdar. “Nanotechnology in Soil Science”. Proc latinum Jubilee Symposium Soil Science, (IARI Campus, New Delhi) December 22-25, (2009): 326-334, Print.

Suresh A.K., D.A. Pelletier and M.J. Doktycz. “Relating nanomaterial properties and microbial toxicity”. Nano, 5 (2013): 463–474, Print.

Tarafdar J.C., R. Raliya and I. Tathore. “Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5”. Journal of Bionanoscience, 6 (2012): 84-89, Print.

Teng Q., D. Zhang, X. Niu and C. Jiang. “Influences of application of slow-release Nano-fertilizer on green pepper growth, soil nutrients and enzyme activity”. IOP Conf. Series: Earth and Environmental Science, 208 (2018): 012014.

Torsvik V and L. Øvreås. “Microbial diversity and function in soil: from genes to ecosystems”. Curr. Opin Microbiol. 5 (2002): 240–245, Print.

Tripathi D.K., S. Singh, R. Pandey, V.P. Singh, et al. “An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity”. Plant Physiol. Biochem. 110 (2017): 2–12, Print.

VandeVoort A.R. and Y. Arai. “The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production”. Appl. Sci. 9 (2019): 499, Print.

Xu C., C. Peng, L. Sun, S. Zhang, H. Huang, Y. Chen and J. Shi. “Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil”. Soil Biol Biochem. 86 (2015): 24–33, Print.

You T., D. Liu, J. Chen, Z. Yang, R. Dou, X. Gao and L. Wang. “Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types”. J Soils Sediments 18 (2018): 211–221, Print.




DOI: https://doi.org/10.5281/aps.2020.9.5.3



Copyright (c) 2020 Annals of Plant Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.