Discovery of natural inhibitors targeting 2 - trans enoyl acyl carrier protein reductase in Mycobacterium tuberculosis by structure based drug designing
Abstract
Keywords
Full Text:
PDFReferences
Anonymous, World Health Organisation: Global tuberculosis control: WHO report (2013).
Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., Collins, D., de Lisle, G., Jacobs Jr, W.R., InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 263, (1994): 227–230.
Brown, A.K., Papaemmanouil, A., Bhowruth, V., Bhatt, A., Dover, L.G., Besra, G.S., Flavonoid inhibitors as novel antimycobacterial agents targeting Rvo636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology. 153, (2007): 3314-3322.
Dessen, A., Quemard, A., Blanchard, J.S., Jacobs, W.R., Sacchettini, J.C., Crystal structure and function of the isoniazid target of in Mycobacterium tuberculosis. Science. 267, (1995): 1638–1641.
Gbotolorun, S.C., Osinubi, A.A., Noronha, C.C., Okanlawon, A.O., Antifertility potential of Neem flower extract on adult female Sprague-Dawley rats. Afr Health Sci. 8, (2008): 168–173.
Hasan, S., Daugelat, S., Rao, P.S.S., Schreiber, M., Prioritizing Genomic Drug Targets in Pathogens: Application to Mycobacterium tuberculosis. PLoS Comput Biol. 2.6, (2006): e61. doi: 10.1371/journal.pcbi.0020061.
Kakati, D., Mahanta, S., Tanti, B., In-silico comparative structural modeling of carbonic anhydrase of the marine diatom Thalassiosira pseudonana. Journal of Research in Bioinformatics. 1, (2012): 9-15.
Lalitha, P., Sivakamasundari, S., Calculation of Molecular lipophilicity and drug likeness for few heterocycles. Orintal J. of Chemistry. 26, (2010): 135-141.
Laurie, A.T., Jackson, R.M., Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 21.9, (2005): 1908-16.
Lim, Y.M., Flavin, M.T., Cassidy, C.S., Mar, A., Chen, F.C., Biflavonoids as antituberculosis agents. Bioorg Med Chem Lett. 11, (2001): 2101-2104.
Lin, Y.M., Zhou, Y., Flavin, M.T., Zhou, L.M., Nie, W., Chen, F.C., Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem. 10, (2002): 2795-2802.
Lipinski, C.A., Drug- like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 44, (2000): 235 – 249.
Morris, G.M., Huey, R., Olson, A.J., Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics. Chapter 8(Unit 8), (2008): 14.
Nunn, P., Williams, B., Floyd, K., Dye, C., Elzinga, G., Raviglione, M., Tuberculosis control in the era of HIV. Nat Rev Immunol. 5, (2005): 819-826.
Pedretti, A., Villa, L., Vistoli, G., VEGA - An open platform to develop chemo-bioinformaitcs applications, using plug-in architechture and script programming. Journal of Molecular Aided Drug Designing. 18, (2004): 167-173.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenbaltt, D.N., Meng, E.C., Ferrin, T.E., UCSF Chimera- A visualization system for exploratory research and analysis. J. Comput. Chem. 25.13, (2004): 1605- 1612.
Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R., Blanchard, J.S., Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34, (1995): 8235–8241.
Raman, K., Yeturu, K., Chandra, N., Target TB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Systems Biology. 2, (2008):109.
Sadowski, J., Gasteiger, J., Klebe G., Comparision of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures. J. Chem. Inf. Comput. Sci. 34, (1994): 1000-1008.
Schroeder, E.K., de Souza, N., Santos, D.S., Blanchard, J.S., Basso, L.A., Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotechnol. 3, (2002): 197-225.
Schumacher, M., Cerella, C., Reuter, S., Dicato, M., Diederic, M., Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr. 6, (2011):149–160.
Sharma, D.K., Pharmacological properties of flavanoids including flavonolignans-Integration of petrocrops with drug development from plants. Journal of Scientific and Industrial Research. 65, (2006): 477-484.
Sullivan, T.J., Truglio, J.J., Boyne, M.E., Novichenok, P., Zhang, X., Stratton, C.F., Li, H.J., Kaur, T., Amin, A., Johnson, F., Slayden, R.A., Kisker, C., Tonge, P.J., High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol. 1, (2006): 43–53.
Trott, O., Olson, A.J., Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31.2, (2010): 455-461.
Vilchèze, C., Wang, F., Arai, M., Hazbón, M.H., Colangeli, R., Kremer, L., Weisbrod, T.R., Alland, D., Sacchettini, J.C., Jacobs Jr, W.R., Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med. 12, (2006): 1027-1029.
Wang, H., Ng, T.B., Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem Biophys Res Commun. 279, (2000): 407-11.
DOI: https://doi.org/10.21746/aps.2016.09.002
Copyright (c) 2016 Annals of Plant Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

